
Mastering CodingBat (Java)

Books by Ulm Publishing

Mastering CodingBat (Java) Vol. 1: Basics
Mastering CodingBat (Java) Vol. 2: Intermediate A
Mastering CodingBat (Java) Vol. 3: Intermediate B
Mastering CodingBat (Java) Vol. 4: Advanced

Mastering CodingBat (Java)
Vol. 2: Intermediate A

Gregor Ulm

Ulm Publishing

Copyright c� 2019 by Gregor Ulm
http://www.gregorulm.com

All rights reserved. No part of this book may be reproduced
in any form or by any means without the prior written consent
of the copyright holder.

Contents

Preface 1

Introduction 3

How to use this book 5

Warm-Up 2 7
stringTimes . 8
frontTimes . 10
countXX . 12
doubleX . 14
stringBits . 16
stringSplosion . 18
last2 . 20
arrayCount9 . 22
arrayFront9 . 24
array123 . 26
stringMatch . 28
stringX . 30
altPairs . 32
stringYak . 34
array667 . 38
noTriples . 40
has271 . 42

String 2 45
doubleChar . 46
countHi . 48
catDog . 50
countCode . 54

vii

endOther . 56
xyzThere . 58
bobThere . 62
xyBalance . 66
mixString . 70
repeatEnd . 72
repeatFront . 74
repeatSeparator . 76
prefixAgain . 78
xyzMiddle . 80
getSandwich . 84
sameStarChar . 88
oneTwo . 90
zipZap . 92
starOut . 96
plusOut . 98
wordEnds . 102

Array 2 107
countEvens . 108
bigDi↵ . 110
centeredAverage . 112
sum13 . 114
sum67 . 116
has22 . 120
lucky13 . 122
sum28 . 124
more14 . 126
fizzArray . 128
only14 . 130
fizzArray2 . 132
no14 . 134
isEverywhere . 136
either24 . 138
matchUp . 140
has77 . 142
has12 . 144
modThree . 146
haveThree . 148
twoTwo . 150

viii

sameEnds . 152
tripleUp . 154
fizzArray3 . 156
shiftLeft . 158
tenRun . 160
pre4 . 162
post4 . 164
notAlone . 166
zeroFront . 168
withoutTen . 170
zeroMax . 172
evenOdd . 174
fizzBuzz . 176

Logic 2 181
makeBricks . 182
loneSum . 184
luckySum . 186
noTeenSum . 188
roundSum . 190
closeFar . 194
blackjack . 196
evenlySpaced . 198
makeChocolate . 200

Map 1 203
mapBully . 204
mapShare . 206
mapAB . 208
topping1 . 210
topping2 . 212
topping3 . 214
mapAB2 . 216
mapAB3 . 218
mapAB4 . 220

ix

x

Preface

In 2012, I published what was back then the first full set of solu-
tions to CodingBat (codingbat.com), both in Java and Python,
on my website gregorulm.com. To my great surprise, there has
been substantial interest, judging from the number of visitors,
comments, and emails I have received over the years. The solu-
tions I wrote and published online I originally wrote down very
quickly, making sure they look clean enough and pass all test
cases.

Over time, I noticed that people started to view my solutions
as a work of reference, comparing their solutions to mine. That
was not my intention at all. However, as I am convinced of
the didactic value of CodingBat, I would like to further expand
on my online solutions in a series of books. The goal of these
books is to introduce problems, describe how to tackle them,
give hints and, which is of utmost interest to people learning
how to program, present fully-worked solutions that discuss how
you get from an idea to a working piece of code. That happens
in a number of steps, which may include discussing alternative
approaches. By doing so, a novice programmer will make two
important realizations. The first one is that there are many valid
solutions to a given problem, while the second one is that non-
trivial programming tasks are performed incrementally, which
may involve dismissing earlier attempts.

The expected reader is a novice programmer, probably a fresh-
man in college. You may also be a high school student or a
self-learner. By working through the books in the Mastering
CodingBat series, the reader will gain a very thorough under-
standing of elementary programming concepts. This will provide
an excellent preparation for future projects, either during your
university studies or at work. I found it very gratifying to wit-

1

ness the positive reception my CodingBat solutions have found.
I hope that these books find an equally warm reception.

Gregor Ulm
Gothenburg, Sweden

2

Introduction

The exercise set published on CodingBat.com is an excellent
tool for leaning how to program. According to its creator, Stan-
ford professor Nick Parlante, the motivation behind his site is
to gradually introduce people to solving increasingly di�cult
problems programmatically. This is a particularly useful tool
for novices because the gap from not knowing much to hav-
ing to solve the kind of problems you are confronted with in a
computer science degree can be quite intimidating.

Programming has become a highly useful skill. Even if you
have no aspirations of becoming a full-time software developer,
it is not at all implausible that your field, no matter what it
is, can advance dramatically with increased automation. For
the most part, that is what programmers do: they automate
processes. Imagine how much more e↵ective you could be at
your job if you were able to automate (or outsource) everything
that is tedious and repetitive! If you fully understand all the
problems on CodingBat, you are well on the way of joining the
automators, if you so desire.

With this book, the goal is to dissect every problem, as of Jan-
uary 2019, in the five CodingBat sections Warmup-2, String-2,
Array-2, Logic-2, and Map-1. Those sections contain slightly
more complex problems than the ones you have encountered in
the first Mastering CodingBat book. Mastery of the concepts
these problems test is a prerequisite for any professional software
developer.

This book is primarily for everyone who has encountered Cod-
ingBat and would like to get a bit more hand-holding, better
guidance, or some help with understanding the various prob-
lems. You could be a high school student, or maybe you are
enrolled in college. You may even be an autodidact. No mat-

3

ter your role, you may have encountered the problem that even
books and other materials that are supposedly written for be-
ginners assume a significant amount of knowledge. Even worse,
many of those books are incredibly, incredibly verbose. In con-
trast, this book presents you with the meat of programming. If
you make it through it, you will become a better programmer.

4

How to use this book

View this book as your personal tutor who guides you through
CodingBat. The presentation of each problem has a fixed for-
mat. We start with the problem description, which also contains
a skeleton of the code, i.e. a function signature. It is your task
to come up with the body of the function. There are many ways
to skin a cat, and there are at least as many ways to solving
problems programmatically. However, some approaches keep
you from learning certain skills. Thus, this book lists the tools
you can use for solving a given problem. It may be tempting
to just use an inbuilt method in Java that does what you are
supposed to write code for, but if you do that, you are not going
to progress much. Unlike in the first book of this series, this
time only methods and functions are mentioned in this section.
I assume that you are by now very familiar with the standard
operators of Java.

In order to guide you in the right directions, an optional hints
section provides a few pointers. Depending on the problem,
those can be substantial or almost nonexistent. Sometimes it is
just a reference to a previous and similar problem. This is fol-
lowed by the solution, which shows at least one possible solution
to the problem, with explanations of the program logic. There
may be more than one suggested solution if there are interesting
alternative approaches.

Treat this book essentially as extensive commentary. I would
suggest to go through it sequentially as the problems normally
increase in di�culty. If you jump around and get stuck, you
may only get needlessly frustrated. For each problem, start
by reading the problem description. Then look at the code
skeleton. Instead of writing code on the CodingBat website,
however, I would like you to use pencil and paper. Yes, you

5

read that correctly. Before starting to type, write code by hand
and try to come up with a solution that is as close to working
code as possible. By not writing executable Java code straight
away you won’t get tempted to, for instance, guessing and using
the website as some kind of feedback generator that helps you
to gradually figure out the solution. Instead, with your pencil
in hand, you figure out the problem before writing any code. If
you can’t do that, then you may need to think harder about the
problem. As you get more experienced, you may want to skip
writing code down on paper first. However, if you find yourself
changing your code too much, then you probably need to spend
more time figuring out the solution in your head first.
Once you are content with the code you have written down on
paper, go to the CodingBat website. Enter your solution, exe-
cute the code. Fix syntactic errors if there are any. (Optional:
if you get stuck, use my hints.) After you’ve solved the problem
correctly, look at my solution and the discussion. Compare your
solution with mine. Make sure you understand every single line
in both your code and my solutions as well as all the variations.
Lastly, I would recommend you work steadily through this book.
Do at least one or two problems every day, but ideally more. I
think you should be able to do at least five problems a day very
comfortably.

6

Warmup-2

7

stringTimes

Problem

The input of the function stringTimes consists of a string str

and a non-negative integer n. The goal is to produce an output
string that consists of the concatenation of n copies of str.
See Listing 1 for the code skeleton.

1 public String stringTimes(String str, int n) {
2 // your code here
3 }

Listing 1: stringTimes – skeleton

Tools

You do not need to use any inbuilt functions for this problem.

Hints

Use an accumulator variable acc for building the value you want
to return.

8

Solution

This is a very straightforward problem. Start with initializing a
variable acc to the empty string. Afterwards, use a for-loop to
concatenate the input string str n times with the string acc.
Listing 2 shows the code.

1 public String stringTimes(String str, int n) {
2 String result = "";
3 for (int i = 0; i < n; i++) {
4 result += str;
5 }
6 return result;
7 }

Listing 2: stringTimes – solution (v1)

Of course, you may as well condense the for-loop to just one
line, as shown in Listing 3.

1 public String stringTimes(String str, int n) {
2 String acc = "";
3 for (int i = 0; i < n; i++) acc += str;
4 return acc;
5 }

Listing 3: stringTimes – solution (v2)

9

frontTimes

Problem

The function frontTimes takes a string str and a non-negative
integer n as its input. The goal is to return a string that consists
of a concatenation of the front of str. In this case, the front
consists of the first three characters of str, or the entire string,
if its length is less than 3. See Listing 4 for the code skeleton.

1 public String frontTimes(String str, int n) {
2 // your code here
3 }

Listing 4: frontTimes – skeleton

Tools

You may want to use the string methods length and substring.

Hints

First, determine which characters constitute the front. After-
wards, build the string you want to return.

10

Solution

This problem is an extension of the previous one. An obvious
solution is to make a case distinction based on the length of the
input string str. If str is at most 3 characters long, build the
eventual return value using the entire string. Otherwise, use a
substring that is made of the first three characters of str. This
approach is shown in Listing 5.

1 public String frontTimes(String str, int n) {
2 String acc = "";
3 if (str.length() <= 3) {
4 for (int i = 0; i < n; i++) {
5 acc += str;
6 }
7 } else {
8 String front = str.substring(0, 3);
9 for (int i = 0; i < n; i++) {

10 acc += front;
11 }
12 }
13 return acc;
14 }

Listing 5: frontTimes – solution (v1)

As you can probably see, there is a bit of redundancy as the two
for-loops are similar. This could be resolved by adding a helper
function, but that would not make it any less awkward. Instead,
we could determine the front of the string with a conditional
expression and consequently eliminate one of the for-loops. This
is shown in Listing 6. The ternary operator in line 3 is used for
conciseness.

1 public String frontTimes(String str, int n) {
2 String acc = "";
3 int pos = str.length() <= 3 ? str.length() : 3;
4 String front = str.substring(0, pos);
5 for (int i = 0; i < n; i++) {
6 acc += front;
7 }
8 return acc;
9 }

Listing 6: frontTimes – solution (v2)

11

44

String-2

45

catDog

Problem

The function catDog takes a string str as its input and returns
true if the substring "cat" appears in it as often as the sub-
string "dog. Otherwise, it returns false. See Listing 46 for
the code skeleton.

1 public boolean catDog(String str) {
2 // your code here
3 }

Listing 46: catDog – skeleton

Tools

You may want to use the string methods length, substring,
and equals.

Hints

While an obvious solution would maintain two separate coun-
ters for the occurrences of the respective substring, think about
whether you can come up with a more elegant approach.

50

Solution

The first version of our solution uses two di↵erent accumulators
for the respective occurrences of the substrings "cat" and "dog.
In the for-loop, we iterate through the entire string, keeping the
boundaries of the array in mind, and increment the accumulators
whenever we encounter one of those substrings. Afterwards, we
check if both accumulators contain the same number, and return
the corresponding boolean value. See Listing 47 for the code.

1 public boolean catDog(String str) {
2 int cats = 0;
3 int dogs = 0;
4 for (int i = 0; i < str.length()-2; i++) {
5 String tmp = str.substring(i, i+3);
6 if (tmp.equals("cat")) cats += 1;
7 if (tmp.equals("dog")) dogs += 1;
8 }
9 return cats == dogs;

10 }

Listing 47: catDog – solution (v1)

There is some redundancy in the previous code because we do
not need to count how often we encounter each of those sub-
strings. Instead, it is su�cient to use only one variable and
increment it whenever we encounter "cat", and decrement it
when we encounter "dog". At the end, we return true if the
counter is equal to 0, and false otherwise. See Listing 48 for
the code.

1 public boolean catDog(String str) {
2 int count = 0;
3 for (int i = 0; i < str.length()-2; i++) {
4 String tmp = str.substring(i, i+3);
5 if (tmp.equals("cat")) count += 1;
6 if (tmp.equals("dog")) count -= 1;
7 }
8 return count == 0;
9 }

Listing 48: catDog – solution (v2)

Of course, for a small problem such as this one, the di↵erence
is minor. However, as your programming projects grow larger,

51

you will find it increasingly helpful to limit superfluous variables
(or state, for functional programmers).

52

53

xyBalance

Problem

The function xyBalance takes a string str as its input. If there
is at least one ’x’ character in str, return true if it is the case
that once a ’y’ character appears in the string there are no
more ’x’ characters. Return false otherwise. See Listing 64
for the code skeleton.

1 public boolean xyBalance(String str) {
2 // your code here
3 }

Listing 64: xyBalance – skeleton

Tools

There is a very easy way to solve this problem, and one way
that teaches you a bit more computational thinking. For the
easy option, use the string method lastIndexOf. For more of
a challenge, do not use that string method but instead only use
the string methods length and charAt.

Hints

If you want to get the most out of this problem then do not use
lastIndexOf.

66

Solution

If you want to use the string method lastIndexOf, you only
have to compare the two positions for the characters ’x’ and
’y’. Note that this method returns the value -1 if the character
searched for has not been found. Thus, we can turn the solution
into a one-liner. See Listing 65 for the code.

1 public boolean xyBalance(String str) {
2 return str.lastIndexOf("x") <= str.lastIndexOf("y");
3 }

Listing 65: xyBalance – solution (v1)

Of course, resorting to an inbuilt function like that is only an
e↵ective way for you to cheat yourself out of honing your pro-
gramming skills. Thus, we will continue with a di↵erent solu-
tion. For this one, we first determine the position of the last
’y’ with a for-loop. As a second step, we look through str

again and determine if the last occurrence of ’x’ is after the
last occurrence of ’y’. See Listing 66 for the code.

1 public boolean xyBalance(String str) {
2 int lastY = -1;
3 for (int i = 0; i < str.length(); i++) {
4 if (str.charAt(i) == ’y’) lastY = i;
5 }
6 for (int i = 0; i < str.length(); i++) {
7 if (str.charAt(i) == ’x’) {
8 if (i > lastY) return false;
9 }

10 }
11 return true;
12 }

Listing 66: xyBalance – solution (v2)

67

There is a more elegant way of solving this problem, namely by
going through str from the back. If we encounter a ’y’ after
having encountered an ’x’, we return false. Otherwise, we
return true. See Listing 67 for the code.

1 public boolean xyBalance(String str) {
2 boolean seen_x = false;
3 for (int i = str.length() - 1; i >= 0; i--) {
4 if (str.charAt(i) == ’x’) seen_x = true;
5 if (str.charAt(i) == ’y’) {
6 if (seen_x) return false;
7 }
8 }
9 return true;

10 }

Listing 67: xyBalance – solution (v3)

68

69

Array-2

107

countEvens

Problem

The function countEvens takes an array of integers nums as its
input. It returns an integer indicating how many even integers
there are in that array. See Listing 100 for the code skeleton.

1 public int countEvens(int[] nums) {
2 // your code here
3 }

Listing 100: countEvens – skeleton

Tools

You will need to use the array attribute length.

Hints

A number x is odd if it is true that x modulus 2 is equal to 1.
Expressed in Java, this becomes x % 2 == 1.

108

Solution

Initialize an accumulator count to 0. Afterwards, iterate through
nums and check, for every element, if it is even by taking its
modulus 2. Whenever you encounter an odd number, incre-
ment count. See Listing 101 for the code.

1 public int countEvens(int[] nums) {
2 int count = 0;
3 for (int i = 0; i < nums.length; i++)
4 if (nums[i] % 2 == 0) count++;
5 return count;
6 }

Listing 101: countEvens – solution

109

bigDi↵

Problem

The function bigDiff takes an array of integers nums as its
input, which contains at least one element. It returns the dif-
ference between its largest and smallest value. See Listing 102
for the code skeleton.

1 public int bigDiff(int[] nums) {
2 // your code here
3 }

Listing 102: bigDiff – skeleton

Tools

Use standard array operators for this problem. The CodingBat
website also recommends using the inbuilt methods Math.max
and Math.min, but try to also solve this problem without them.

110

Solution

The input array nums contains at least one element. Thus, we
can declare two variables max and min, and initialize them to
nums[0]. Afterwards, we iterate through nums and compare
each element with both max and min. If the current element is
larger than the current value of max, we update that variable.
Similarly, if the current element is larger than the current value
of min, we update min. At the end, we return the di↵erence
between max and min. See Listing 103 for the code.

1 public int bigDiff(int[] nums) {
2 int max = nums[0];
3 int min = nums[0];
4 for (int i = 0; i < nums.length; i++) {
5 if (nums[i] > max) max = nums[i];
6 if (nums[i] <= min) min = nums[i];
7 }
8 return max - min;
9 }

Listing 103: bigDiff – solution (v1)

Alternatively, you could use Math.max and Max.min to itera-
tively update the variables max and min. To do so, determine
the maximum as well as the minimum of the current element
and max and min, respectively. See Listing 104 for the code.

1 public int bigDiff(int[] nums) {
2 int max = nums[0];
3 int min = nums[0];
4 for (int i = 0; i < nums.length; i++) {
5 max = Math.max(nums[i], max);
6 min = Math.min(nums[i], min);
7 }
8 return max - min;
9 }

Listing 104: bigDiff – solution (v2)

111

179

180

Logic-2

181

makeBricks

Problem

The function makeBricks takes three integers small, big, and
goal as its input. The first value stands for the amount of bricks
that are 1 inch long, the second for the amount of bricks that
are 5 inches long, and the third is the length we want to achieve
by placing those bricks one after the other. Return true if the
goal can be achieved and false otherwise. See Listing 177 for
the code skeleton.

1 public boolean makeBricks(int small, int big, int goal) {
2 // your code here
3 }

Listing 177: makeBricks – skeleton

Tools

Using Math.min may be helpful. However, this problem can be
solved just with standard Java operators.

182

Solution

Let us start with goal and see if we can reduce it to 0 or less.
First, we subtract from that variable as many of the big bricks
times 5 as possible. This is expressed as the minimum of two
values: the number of big bricks as well as the result of dividing
goal by 5. It may be that the latter is less than the number of
big bricks available, in which case we have big bricks left over,
which we cannot use. The remaining value, which is now stored
in goal, has to be reached with the available small bricks. Thus,
it is su�cient to check if goal is less than or equal to small.
See Listing 178 for the code.

1 public boolean makeBricks(int small, int big, int goal) {
2 goal -= 5 * Math.min(big, (goal / 5));
3 return goal <= small;
4 }

Listing 178: makeBricks – solution (v1)

An alternative solution works without taking the minimum. It
uses two checks. First, we check if the remainder we have to
cover after using up the big bricks is less than or equal to small.
Then, we take goal modulus 5 and check if the result is less
than or equal to small. See Listing 179 for the code.

1 public boolean makeBricks(int small, int big, int goal) {
2 return goal - big * 5 <= small
3 && goal % 5 <= small;
4 }

Listing 179: makeBricks – solution (v2)

183

202

Map-1

203

mapBully

Problem

The function mapBully takes a map map as its input whose keys
and values are strings. It modifies map as follows: if it contains
a key "a", set the key "b" to that value and "a" to the empty
string. See Listing 202 for the code skeleton.

1 public Map<String, String> mapBully(Map<String, String> map) {
2 // your code here
3 }

Listing 202: mapBully – skeleton

Tools

You will need to use the map methods containsKey, get, and
put.

Hints

You do not need to check if the key "b" is contained in map. If
it is not, we create that key/value pair. Otherwise, we replace
whatever value that key is stored with.

204

Solution

We check if map contains the key "a". If so, we retrieve its
value and store it in a temporary variable tmp. Then we store
the empty string with the key "a" and tmp with the key "b".
See Listing 203 for the code.

1 public Map<String, String> mapBully(Map<String, String> map) {
2 if (map.containsKey("a")) {
3 String tmp = map.get("a");
4 map.put("a", "");
5 map.put("b", tmp);
6 }
7 return map;
8 }

Listing 203: mapBully – solution

205

