Mastering Coding Bat (Java)

Books by Ulm Publishing

ol. 1: Basics

ol. 2: Intermediate A
ol. 3: Intermediate B
ol. 4: Advanced

Mastering Coding Bat (Java
Mastering Coding Bat (Java
Mastering Coding Bat (Java
Mastering Coding Bat (Java),

<<<

<

).
).
).
)

Mastering Coding Bat (Java)
Vol. 1: Basics

Gregor Ulm

Ulm Publishing

Copyright (© 2018 by Gregor Ulm
http://www.gregorulm.com

All rights reserved. No part of this book may be reproduced
in any form or by any means without the prior written consent
of the copyright holder.

Contents

Preface
Introduction
How to use this book

Warmup-1
sleepln
monkeyTrouble 0.

sumDouble

parrotTrouble

makeslO

front3

icyHot 68
in1020 72
hasTeen 76
loneTeen 80
delDel 84
mixStart 86
startOz 88
intMax 92
closelO L 96
in3050 100
max1020 104
stringEo 108
lastDigit 110
endUp 112
everyNth 116
String-1 119
helloName 120
makeAbba 122
makeTags 124
makeOutWord 126
extrabndo 128
firstTwo 130
firstHalfo 132
withoutEndo 134
comboString 136
nonStart 138
left2 140

right2 142

theEndo 144
withouEnd2o 146
middleTwo 148
endsLy 150
nTwice 152
twoChar 154
middleThree 156
hasBad 158
atFirsto 162
lastChars 164
conCat 166
lastTwo 170
seeColor 172
frontAgain 174
minCat 176
extraFront o oo 178
without2o 180
deFront 184
startWordo 186
withoutX L 188
withoutX2 190
Array-1 193
firstlast 194
sameFirstlast 196
makePi 198
commonEnd 200
SUM3 . . . 202

rotateLeft3 204

reverse3 206
maxEnd3 208
SUM2 . . . L 210
middleWay 212
makeEnds Lo 214
has23 216
No23 L 218
makelLast 220
double23 222
fix23 . . 224
startl . .. 226
biggerTwo 228
makeMiddleo 230
plusTwo 232
swapEnds 234
midThree 236
maxTriple 238
frontPieceo 240
unluckyl 242
make2 244
frontll 248
Logic-1 251
cigarParty 252
dateFashion 254
squirrelPlayo 256
caughtSpeeding 258
sortaSum 260

loveb 264
inlTol0 266
specialEleveno 268
more20 270
old35 272
less20 274
nearTen 276
teenSum 278
answerCell 280
teaParty 282
fizzString 284
fizzString2 286
twoAsOne 288
inOrder 290
inOrderEqual 292
lastDigit 294
lessBy10 296
withoutDoubles 298
maxMod5 302
redTicket L 304
greenTicket 306
blueTicket, 308
shareDigito 310
sumLimito 312

Vi

Preface

In 2012, | published what was back then the first full set of solu-
tions to Coding Bat (codingbat.com), both in Java and Python,
on my website (gregorulm.com). To my great surprise, there has
been substantial interest, judging from the number of visitors to
my website, and the deluge of comments and emails | have re-
ceived over the years. The solutions | developed and published
online | originally wrote down very quickly, making sure they
look clean enough and pass all test cases.

Over time, | noticed that people started to view my solutions
as a work of reference, comparing their solutions to mine. That
was not my intention at all. However, as | am convinced of
the didactic value of Coding Bat, | would like to further expand
on my online solutions in a series of books. The goal of these
books is to introduce problems, describe how to tackle them,
give hints and, which is of utmost interest to people learning
how to program, present fully-worked solutions that discuss how
you get from an idea to a working piece of code. That happens
in a number of steps, which may include discussing alternative
approaches. By doing so, a novice programmer will make two
important realizations. The first one is that there are many valid
solutions to a given problem, while the second one is that non-
trivial programming tasks are performed incrementally, which
may involve dismissing earlier attempts.

The expected reader is a novice programmer, probably a fresh-
man in college. You may also be a high school student or a
self-learner. By working through the books of this series, you
will gain a very thorough understanding of elementary program-
ming concepts. This will provide an excellent preparation for
future projects, either during your university studies or at work.

If you work through those problems, you will be well on your
way to becoming a competent programmer. Seeing that pro-
gramming skills have become important in many industries, that
time will be well-spent.

| found it very gratifying to witness the positive reception my
Coding Bat solutions have found. | hope that my book series
Mastering Coding Bat will find an equally warm reception.

Gregor Ulm
Gothenburg, Sweden

Introduction

The exercise set published on the Coding Bat website is an
excellent tool for leaning how to program. According to its cre-
ator, Stanford professor Nick Parlante, the motivation behind
that site is to gradually introduce people to solving increasingly
difficult problems programmatically. This is a particularly use-
ful tool for novices because the gap from not knowing much to
having to solve the kind of problems you are confronted with in
an introductory course in computer science can be quite intim-
idating.

Programming has become a highly useful skill. Even if you
have no aspirations of becoming a full-time software developer,
it is not at all implausible that your field, no matter what it
is, can advance dramatically with increased automation. For
the most part, that is what programmers do: they automate
processes. Imagine how much more effective you could be at
your job if you were able to automate or outsource everything
that is tedious and repetitive! If you fully understand all the
problems on Coding Bat, you are well on the way of joining the
automators, if you so desire.

With this book, the goal is to dissect every problem in the four
Coding Bat sections Warmup-1, String-1, Array-1, and Logic-
1. Those sections introduce basic operations, which are the
bread and butter of programming. They gradually introduce
new concepts, but not too many of them. There is also a
significant amount of problems that are variations of previous
ones, which allow you to solidify your knowledge.

This book is primarily for everyone who has encountered Coding
Bat and would like to get a bit more hand-holding, better guid-

ance, or some help with understanding the various problems.
You could be a high school student, or maybe you are enrolled
in college. You may even be an autodidact. No matter your
role, you may have encountered the problem that even books
and other materials that are supposedly written for beginners
assume a significant amount of knowledge. Even worse, many
of those books are incredibly, incredibly verbose. In contrast,
this book presents you with the meat of programming. If you
make it through it, you will become a better programmer.

How to use this book

View this book as your personal tutor who guides you through
Coding Bat. The presentation of each problem has a fixed for-
mat. We start with the problem description, which also contains
a skeleton of the code, i.e. a function signature. It is your task
to come up with the body of the function. There are many ways
to skin a cat, and there are at least as many ways to solving
problems programmatically. However, some approaches keep
you from learning certain skills. Thus, this book lists the tools
you can use for solving a given problem. It may be tempting
to just use an in-built method in Java that does what you are
supposed to write code for, but if you do that, you are not going
to progress much.

In order to guide you in the right directions, the hints section
provides a few pointers. Depending on the problem, those can
be substantial or almost nonexistent. Sometimes it is just a
reference to a previous and similar problem. This is followed by
the normally only sparsely commented solution, which shows one
possible solution to the problem. It will be correct, but it may
not be the most elegant one. In contrast, the optional discussion
section highlights different approaches or presents variations.
Some problems come with a very extensive discussion section
that contains several alternative solutions.

Treat this book essentially as very extensive commentary. |
would suggest that you work through it sequentially as the prob-
lems tend to increase in difficulty. If you jump around and get
stuck, you may only get needlessly frustrated. For each problem,
start by reading the problem description. Then look at the code
skeleton. Instead of writing code on the Coding Bat website,
however, | would like you to use pencil and paper. Yes, you read

that correctly. Before starting to type, write code by hand and
try to come up with a solution that is as close to working code
as possible. By not writing executable Java code straight away
you will not get tempted to, for instance, guessing and using
the website as some kind of feedback generator that helps you
to gradually figure out the solution. Instead, with your pencil in
hand, you figure out the problem before writing any code on the
computer. If you cannot do that, then you may need to think
harder about the problem. As you get more experienced, you
may want to skip writing code down on paper first. However, if
you find yourself changing your code too much, then you prob-
ably need to spend more time figuring out the solution in your
head first.

Once you are content with the code you have written down
on paper, go to the Coding Bat website. Enter your solution
and execute the code. Fix syntactic errors if there are any.
(Optional: if you get stuck, use my hints.) After you have solved
the problem correctly, look at my solution and the discussion.
Compare your solution with mine. Make sure you understand
every single line in both your code and my solutions as well as
all the variations.

Lastly, | would recommend you work steadily through this book.
Do at least one or two problems every day, but ideally more. |
think you should be able to do at least five problems a day very
comfortably.

Warmup-1

notString

Problem

In the problem notString, we encounter strings. The func-
tion takes a string str as an argument and adds "not " to
it, including a space at the end. However, this only happens if
the string str does not start with "not". If it does start with
"not", then return str unchanged. See Listing 49 for the code
skeleton.

public String notString(String str) {
// your code here
}

Listing 49: notString — skeleton

Tools

You can use conditional statements, comparison operators, boolean
operators, the string concatenation operator as well as the string
methods length, substring, and equals.

Hints

The problem description does not indicate that there is an issue
with the method substring: If the string you are applying this
method to is not within the boundaries of the substring you have
specifed, Java throws an exception, i.e. your program crashes.
Consequently, you first need to check the length of the string.
In case the string str is of the correct length, check if the first
three characters of it equal "not".

42

© 0 N O U R W N

Solution

Based on the hints provided above, one possible solution is given
in Listing 50. We systematically perform the required checks.
If any of the checks fail, we know that we need to prepend
the string with "not ". Obviously, if the string is not at least
three characters long, it cannot start with "not". Therefore,
we can return a new string, consisting of the input string str,
prepended with " not". We also do this if str is at least three
characters long, but does not start with "not". Otherwise, we
return str.

public String notString(String str) {
if (str.length() >= 3) {
String prefix = str.substring(0, 3);
if (prefix.equals("not")) {
return str;
}
¥
return "not " + str;

}

Listing 50: notString — solution

Discussion

Let us start by tackling this problem case by case. The first
important observation is that if the input string str is less than
three characters long, we have to prepend it with "not ". After
all, we are checking if str starts with "not", and if it is not at
least three characters long, it is not possible that it could start
with that word. If the function notString has not returned
after the first if-clause, we perform a second check, based on the
first three letters of the string. If that substring equals "not",
we return the string str unchanged. Finally, if the function still
has not returned, we return a new string, made of str and a
prepended string "not ". The corresponding code is provided
in Listing 51. We will look at a few more variations further
below.

43

© 00 N 3 U R W N =

0w N O Ut R W N

S = B U N

public String notString(String str) {

if (str.length() < 3) {
return "not " + str;

}

if (str.substring(0, 3).equals("not")) {
return str;

}

return "not " + str;

}

Listing 51: notString — variation 1

In order to further simplify the code, it would be helpful if the
first if-clause could be modified so that it returns str. For this,
we need to combine the two if-clauses, for example by nesting,
as shown in Listing 52.

public String notString(String str) {
if (str.length() >= 3) {
if (str.substring(0, 3).equals("not")) {
return str;
X
}
return "not " + str;

}

Listing 52: notString — variation 2

We can condense the code further by removing the nested if-
clause, as shown in Listing 53. | would not recommend turning
the resulting code into a one-liner by using the ternary operator
as the resulting code would be difficult to read.

public String notString(String str) {
if (str.length() >= 3
&& str.substring(0, 3).equals("not")) {
return str;
}
return "not " + str;
}

Listing 53: notString — variation 3

44

45

in1020

Problem

The function in1020 takes two integers a, b as input and re-
turns true if one of them is in the range [10 ... 20]. Otherwise,
it returns false. See Listing 87 for the code skeleton.

public boolean in1020(int a, int b) {
// your code here
}

Listing 87: in1020 — skeleton

Tools

For this problem you can use conditional statements, comparison
operators, and boolean operators.

Hints

This is very straightforward. As a start, tackle both cases in
turn, i.e. you first check a, followed by b and determine if they
are in the prescribed range of integers.

72

© 0w N O U R W N =

Solution

The code in Listing 88 shows a straightforward solution. In
the subsequent discussion, we will see a more elegant approach,
though.

public boolean in1020(int a, int b) {
return (a >= 10 && a <= 20) || (b >= 10 && b <= 20);
}

Listing 88: in1020 — solution

Discussion

Let us start by checking both integers in separate if-statements.
As you can see in the code shown in Listing 89, there is quite
some duplication. We perform the exact same check, on differ-
ent values, twice. This does not change if we rewrite the code
into a more concise form, like in Listing 88 above.

public boolean in1020(int a, int b) {
if (a >= 10 && a <= 20) {
return true;
}
if (b >= 10 && b <= 20) {
return true;
}

return false;

}

Listing 89: in1020 — variation 1

Indeed, a downside of this exercise is that it teaches you to
duplicate code, which is a rather bad habit to acquire. If you
encountered a problem like this in the real world, you would
instead create a separate helper function. This is goes a bit be-
yond what Coding Bat teaches up to this point, so view the code
given in Listing 90 as a reference. As you can see, the helper
function inRange checks whether the argument n is within the
desired range. Thus, we replace the actual computation shown
in Listing 88 with two function calls.

73

public boolean in1020(int a, int b) {
return inRange(a) || inRange(b);

}

public boolean inRange(int n) {
return n >= 10 && n <= 20;
}

Listing 90: in1020 — variation 2

74

75

